PRA QUALITY IN REGULATORY DECISIONS

Gareth W. Parry
Senior Level Advisor for PRA
Office of Nuclear Reactor Regulation

U.S. Nuclear Regulatory Commission

PRAXI-5

October 29, 2004

OUTLINE

- Use of PRA results in regulatory applications
- Quality of PRA input to decision-making
- Development and use of PRA Standards and industry peer review program (NEI-00-02)
- Phased approach to achieving PRA quality

USE OF PRA RESULTS IN REGULATORY APPLICATIONS

- NRC has adopted a risk-informed approach to use of PRA in regulatory decisionmaking
- The philosophy is discussed, in the context of changes to the licensing basis, in RG 1.174
- PRA analyses are one, but not the only, input to the decision

Principles of Risk-Informed Decisionmaking

DEFENSE IN DEPTH

- Reasonable balance of
 - prevention of core damage
 - prevention of containment failure
 - consequence mitigation
- Avoid over-reliance in programmatic activities
- Preserve system redundancy, independence and diversity commensurate with expected frequency
- Independence of barriers is not degraded (e.g., reactor coolant piping and containment)
- Preserve defense against human errors
- Intent of General Design Criteria are maintained

SAFETY MARGINS

- Safety Margins are maintained by ensuring
 - Codes and Standards or approved alternatives are met
 - Safety analysis acceptance criteria in licensing basis are met, or proposed revisions provide sufficient margin to account for uncertainty in data and analysis

FORMULATION OF PRA INPUT TO APPLICATION

- Identify SSCs, operator actions, and plant operational characteristics affected by application
- Describe impact of proposed application on SSCs, etc. (cause-effect relationship)
- Map impact onto elements of the PRA model

FORMULATION OF PRA INPUT TO APPLICATION (Cont'd)

- Define acceptance guidelines or criteria (e.g., acceptance guidelines of RG 1.174)
 - Results required
 - Method of comparison
- These activities result in an identification of
 - Scope of risk contributors
 - Level of detail required

CORE DAMAGE FREQUENCY ACCEPTANCE GUIDELINES

ISSUES THAT IMPACT THE VALUE OF PRA INPUT

- "Quality" of PRA model
- Treatment of uncertainty
 - Parameter (e.g., component failure probability, initiating event frequency) uncertainty
 - Model uncertainty (e.g., success criteria)
 - Completeness (e.g., missing initiating events or modes of operation, errors of commission)

CHARACTERIZATION OF INPUT UNCERTAINTY

- Parameter uncertainty characterized by probability distributions representing state of knowledge about "true" value
- Model uncertainty may be represented as a discrete probability distribution over several models, with the probabilities representing the analysts' relative degrees of belief in the validity of the models. More commonly, a single representative model is assumed
- By definition, incompleteness is not addressed in the model structure

APPROACH TO DEALING WITH UNCERTAINTY IN PRA RESULTS

- Objective is to provide assurance that the conclusion drawn from the PRA analysis is robust in light of the uncertainties
- Strategy
 - Identify and prioritize sources of uncertainty (with respect to their importance to the results being used)
 - Address parameter uncertainties by propagating uncertainties and using resulting mean value for comparison with acceptance guidelines
 - Address model uncertainties by developing an understanding of whether there are plausible, alternative assumptions that would impact the result of the comparison with the acceptance guidelines
 - Address incompleteness by one of the following approaches

APPROACHES TO ADDRESSING INCOMPLETENESS

- Provide qualitative arguments or bounding analyses
- Design the application so that it does not impact the unmodeled contribution to risk
- Make conservative decisions to compensate for missing contributions
- Perform a full scope PRA

"QUALITY" OF PRA

- NRC is less concerned with the quality of the PRA in its own right than with the quality of the decisions made (SECY-00-0162)
- The PSA must be capable of supporting the results used in the application in terms of scope, level of detail
- Different applications require use of different PRA elements: some, e.g., categorization of SSCs by risk significance, use the complete PRA; others, e.g., a simple tech spec change, require only a portion of the PRA
- Those elements of the PRA required for an application must be performed in a technically competent manner consistent with industry good practices

PRA QUALITY

- Defined in RG 1.174 and RG 1.200
 - For a given application, PRA Quality is determined by the appropriateness of
 - Scope (internal and external initiating events, full power and low power and shutdown operating modes)
 - Level of detail
 - Technical adequacy

TECHNICAL ADEQUACY OF PRA INPUT FOR A REGULATORY APPLICATION

- In the USA, the technical adequacy of licensee PRAs varies widely
- Some NRC Staff review of the underlying PRA will generally be required
- NRC and industry goal is to minimize and focus the review of underlying PRA
- PRA Standards and industry peer review process either have been or are being developed, and can be used to provide an understanding of the strengths and weaknesses of a PRA

STATUS AND SCOPE OF STANDARDS AND RELATED DOCUMENTS

- ASME: Standard for Probabilistic Risk Assessment for Nuclear Power Plant Applications (internal initiating events at full power) issued April, 2002, and Addendum A in December, 2003
- NEI-00-02: PRA Peer Review Process Guidance, supported by "sub-tier criteria" and guidance for self assessment against the ASME Standard, submitted for NRC review in December, 2001

STATUS AND SCOPE OF STANDARDS AND RELATED DOCUMENTS (Cont'd)

- ANS: Standard for PRA for external hazards for plants at full power (seismic, wind, other) issued December 2003
- ANS: Standard for PRA for low power and shutdown modes of operation, expected 2005
- ANS: Standard for PRA for internal fires, expected 2006

ASME PRA STANDARD FOR PRA FOR NPP APPLICATION

- Provides a Standard for performing and using a PRA
 - Definitions
 - Risk assessment application process
 - Risk assessment technical requirements
 - PRA configuration control
 - Peer review
- The Standard is a "what to do" but not a "how to do" Standard it does not prescribe specific methods or standard assumptions
- One objective of the peer review is to assess the appropriateness of significant assumptions

NRC STAFF GUIDANCE ON USE OF STANDARDS

• NRC in February 2004 issued RG 1.200 (and supporting SRP Chapter 19.1 that provides "An Approach for Determining the Technical Adequacy of PRA Results for Risk-Informed Activities" for trial use.

REGULATORY GUIDE/SRP

- Main body of RG provides general guidance to licensees on how to use a standard (or industry peer review program) to demonstrate and document that the PRA input to a decision is supported by a PRA of sufficient quality
- Appendixes to RG provide Staff regulatory position on the individual Standards or peer review process guidance (currently only the ASME Standard and NEI-00-02)
- Staff review will focus on those areas where alternatives to the Staff regulatory position are used

RELATIONSHIP OF RG TO OTHER REGULATORY DOCUMENTS

Examples:

SRM ON PHASED APPROACH TO PRA QUALITY

- In December, 2003, the Commission issued an SRM entitled, Stabilizing the PRA Quality Expectations and Requirements
- Directs the staff to develop an action plan to:
 - Define a practical strategy for implementation of a phased approach to achieving PRA quality
 - Address the resolution of technical issues, such as:
 - Model uncertainty
 - Seismic and other external events
 - Human performance issues

APPROACH IN THE SRM

- Defines a phased approach to achieving an appropriate quality for licensee PRAs for NRC's risk-informed regulatory decisionmaking
- Allows continued practical use of risk insights while progressing towards more complete, and technically acceptable PRAs

THE PHASED APPROACH

- The phases are differentiated by the availability of guidance documents for using PRA in regulatory applications, and for establishing that the PRAs are of sufficient quality. These include:
 - industry consensus standards
 - industry guidance documents
 - regulatory guides and other guidance documents (e.g., NUREGs)
- Staff guidance documents addressing performance of reviews are required for implementation.

PHASE 1

- Phase 1 represents the status quo
- PRA quality judged only in the context of what is needed for the application no requirement for the review of the base PRA
- All contributors to risk (operational modes and initiating event types) are considered
- Contributors to risk not in the scope of the PRA model are addressed in a number of ways including qualitative arguments, bounding analysis, and restricting the scope of application

PHASE 2

- An application type ("issue-specific") approach to PRA quality
- PRA quality demonstrated by comparison with an applicable consensus standard for those elements required by the application
- All contributors to risk (operational modes and initiating event types, internal, seismic, fire, etc.) are addressed
- All <u>significant</u> risk contributors applicable to the issue are <u>included in the PRA scope</u>
- Significance of a contributor is determined by whether taking it into consideration could change the decision substantially

PHASE 2 (Cont'd)

- To achieve Phase 2, guidance must exist for
 - Use of PRA in making the decision (e.g., regulatory guides), including definition of scope
 - Assessment of the quality of the base PRA for each scope item used to support the application (e.g., Standards, RG 1.200)

PHASE 3

- Regulatory framework is in place that enables licensees to develop a base PRA to conform to all the existing Standards in sufficient depth to address all currently envisioned applications
- Phase 3 is scheduled to be completed by December 31, 2008
 - Consistent with schedule for Standards development
- A licensee enters Phase 3 when its base PRA conforms to all the existing Standards in sufficient depth to address all currently envisioned applications

STAFF REVIEW OF BASE PRA

- Phase 1: currently at the discretion of the reviewer but after trial use completed, will rely on peer review in accordance with RG 1.200 with audit for each application
- Phase 2: reliance on RG 1.200 for all significant contributors
- Phase 3: as for Phase 2 but performed one time sufficient to address all applications
- Phase 4: staff review and approval of base PRA

RESOLUTION OF TECHNICAL ISSUES

Model uncertainty

 Guidance document (e.g., NUREG) being developed that addresses the issue of treatment of uncertainties (e.g., model) in both the PRA and in decision making

Seismic and other external events

- ANS standard on external events under staff review (preliminary staff position for public review and comment issued August 2004)
- Above document (on uncertainties) also includes guidance for acceptable alternative methods (e.g., bounding, sensitivity analyses) to a PRA

• Human performance issues

 NUREG 1792 on good HRA practices to supplement the PRA (HRA) standard issued for public review and comment